# Fractions And Decimals Questions

We provide fractions and decimals practice exercises, instructions, and a learning material that allows learners to study outside of the classroom. We focus on fractions and decimals skills mastery so, below you will get all questions that are also asking in the competition exam beside that classroom.

#### List of fractions and decimals Questions

Question NoQuestionsClass
1If ( left(frac{8}{15}right)^{3}-left(frac{1}{3}right)^{3}-left(frac{1}{5}right)^{3}=frac{x}{75}, ) Find
( boldsymbol{x} )
7
2f ( frac{129}{2000}=frac{129}{2 m} times 5 n ) find the values of
( m ) and ( n )
7
3Example for an improper fraction from the given options is
A ( cdot frac{25}{26} )
в. ( frac{12}{13} )
c. ( frac{15}{14} )
D. ( frac{19}{20} )
7
4Wrote the following as mixed fraction ( frac{7}{2}, frac{8}{5} )7
5( mathbf{0 . 0 0 0 8 m}=mathbf{8} times mathbf{1 0}^{-boldsymbol{x}} boldsymbol{m} . ) Find ( mathbf{x} )7
6Reciprocal of ( 2 frac{1}{4} )
( mathbf{A} cdot-frac{9}{4} )
B. ( -frac{4}{9} )
c. ( frac{9}{4} )
D. ( frac{4}{9} )
7
7Express each of the following without using decimals:
( boldsymbol{R} boldsymbol{s} . mathbf{5} . mathbf{2 5} )
7
8Convert ( 1 frac{4}{11} ) into improper fraction?7
9The sum of place value of digit 2 in the
number 21.236 is
A . 20
B. 20.2
c. 22
D. 2.2
7
10Add an express the sum as a mixed
fraction:
( frac{101}{6} ) and ( frac{7}{8} )
7
11Express as kilogram (kg) using decimals:
( 150 g )
7
12If ( 1 frac{2}{3}+1 frac{2}{8}=frac{35}{a} ) then, find the value of
( a )
7
13Write 5 equivalent fraction of ( frac{7}{13} )7
14Write the following rational number in decimal form ( frac{23}{2^{3} cdot 5^{2}} )7
15solve:
( (i) 6 frac{1}{4} div 1 frac{1}{3} )
(ii) ( 12 div 1 frac{3}{4} )
( (mathrm{iii}) frac{1}{3} times 2 frac{1}{3} )
7
16The following question is based on simple arithmetic principles. Find the right answer from the given
alternatives. ( frac{26}{4}+frac{14}{3}=? )
A. 11.0
в. ( _{10} frac{1}{6} )
c. ( _{11} frac{1}{6} )
D. ( _{12} frac{1}{5} )
E ( cdot 11 frac{2}{3} )
7
17Write the place value of the underlined digit of the following decimal numbers:
(i) 82.61
(ii) 5.24
7
18If numerator and denominator of a
proper fractions are increased by the same quantity, then the resulting fraction is then
A. always greater than the original fraction
B. always less than the original fraction
c. always equal to the original fraction
D. none of these
7
1911. Simplify

X-
23
7
(iv) 8
1
16
1
12
-+
2
7
20Convert into mixed fractions.
(a) ( frac{3}{2} )
( (b) frac{24}{5} )
7
21An alloy consists of ( 3 frac{1}{2} g m ) of copper and ( 2 frac{3}{4} g m ) of tim. Find the ratio of copper so that of tim in the alloy in the simplest form.7
22Which of the following is a
proper fraction?
( A )
B.
( c )
D. All the above
7
23Express each of the following without using decimals:
( 3.05 k m )
7
24Simplify: ( 9 frac{5}{10} )7
25Express as kilogram (kg) using decimals:
( 8 g )
7
26Solve ( frac{mathbf{7}}{mathbf{8}}+frac{mathbf{5}}{mathbf{1 2}} times frac{mathbf{9}}{mathbf{1 0}}-frac{mathbf{1}}{mathbf{4}} )7
27Express the following as a fraction and simplify:
( mathbf{2 . 4 5} )
A ( cdot frac{49}{20} )
в. ( frac{20}{49} )
c. ( frac{19}{20} )
D. ( frac{20}{19} )
7
28Find the average of ( frac{2}{3}, frac{1}{5} )7
29Choose the fraction which is equivalent
to ( frac{15}{20} )
A ( cdot frac{12}{15} )
B. ( frac{51}{12} )
( c cdot frac{4}{3} )
D. ( frac{12}{16} )
7
30( 3 frac{2}{5}=3+—- )
( A cdot frac{3}{5} )
B.
( c cdot frac{2}{5} )
D. ( _{3} frac{2}{5} )
7
31If ( frac{1}{k}=frac{1}{3}+frac{1}{4} ) then the value of ( K ) is
A ( cdot 1 frac{5}{7} )
в. ( 2 frac{5}{7} )
( mathrm{c} cdot_{3} frac{5}{7} )
D. ( _{4} frac{5}{12} )
7
32Place value chart is extended on
side to provide place for fractions.
A. Right
B. Left
c. No
D. None
7
33Improper fraction of ( 12 frac{1}{6} ) is
A ( cdot frac{72}{6} )
в. ( frac{73}{6} )
c. ( frac{108}{6} )
D. ( frac{85}{6} )
7
34Write the following decimals in the place value table.
( mathbf{2 . 0 8} )
7
35Simplify ( 2 frac{2}{7} div 1 frac{4}{11} times 2 frac{4}{9} )7
36The fractions which have one as
the numerator are called
fractions.
A . like
B. unlike
c. unit
D. none
7
37Divide:
5.8 by 100
7
389. Raja takes one hour to complete
5 th of his journey. Then, he
takes another one hour to com-
plete 5th of his journey. He
takes 45 minutes of cover the
remaining 220 km. Find the to-
tal distance of his journey.
(1) 550 km (2) 220 km
(3) 330 km (4) 440 km
7
3914
2
1.
Find **
7
408.
Simplify:
X
Opticum
7
41Convert the following into fraction.
( 44 % )
A ( cdot frac{11}{44} )
в. ( frac{44}{1000} )
c. ( frac{44}{11} )
D. ( frac{11}{25} )
7
42The above figure represents which of the following fractions?
A ( cdot frac{9}{7} )
B. ( 2 frac{1}{2} )
c. ( _{4} frac{1}{2} )
D. ( _{2} frac{1}{4} )
7
43Covert ( frac{2}{3}, frac{5}{7} ) pair of fraction into like fractions?7
44Three-sevenths =
( A cdot frac{3}{17} )
в. ( frac{13}{7} )
( c cdot frac{3}{7} )
D. one
7
4517. In a certain office,
Hain office
of the
workers are women,
of the
somen are married and of the
married women have children. If
of the men are married and
of the married men have chil-
dren, then what part of workers
are without children?
7
46Which of the following statement is true
( ? )
A. Fractions with same numerator are called like fractions
B. Fractions with same denominator are called unlike
fractions
C. Difference of two like fractions = ( frac{text {difference of numerators}}{text {common denominator}} )
D. A fraction with numerator greater than or equal to the denominator is called proper fraction
7
47Add an express the sum as a mixed
fraction:
( frac{-31}{6} ) and ( frac{-27}{8} )
7
48Arrange in ascending order:
( mathbf{2 5 6 . 3 6}, mathbf{2 5 6 . 5 6}, mathbf{2 5 6 . 2 6}, mathbf{2 5 6 . 4 6} )
A . 256.36,256.56,256.26,256.46
B . 256.26,256.56,256.36,256.46
c. 256.36,256.46,256.26,256.56
D. 256.26,256.36,256.46,256.56
7
49Conver the given fractional numbers to
percent:
( frac{mathbf{3}}{mathbf{4 0}} )
7
500.2008 is equal to
A ( cdot frac{252}{1250} )
в. ( frac{251}{1250} )
c. ( frac{250}{1250} )
D. None of these
7
51In the number ( 0.257, ) which of the
following does the digit 7 represent??
A ( cdot 7 times frac{1}{10} )
в. ( 7 times frac{1}{100} )
c. ( _{7 times frac{1}{1000}} )
D. ( 7 times frac{1}{10000} )
E ( cdot 7 times frac{1}{100000} )
7
52Convert the following into a fraction:
( 0.2 times 0.02 times 0.002 )
A ( cdot frac{1}{125} )
в. ( frac{1}{1250} )
c. ( frac{1}{125000} )
D. None of these
7
53Solve:
( frac{x+2}{x-2}=frac{7}{3} )
7
540.614 can be represented as
A ( cdot frac{61.4}{10} )
в. ( frac{614}{1000} )
c. ( frac{614}{10} )
D. None of the above
7
550.8 can be represented as
( A cdot frac{8}{10} )
в. ( frac{8}{100} )
c. ( frac{8}{1000} )
D. None of the above
7
56Use the digits 11,9,7 to form the smallest and the largest mixed number. Then find their sum giving your answer as a mixed number.
A ( cdot 18 frac{8}{9} )
в. ( 20 frac{8}{77} )
c. ( _{18} frac{42}{99} )
D. ( _{19} frac{52}{77} )
7
57The denominator of a fraction is greater
than its numerator by ( 12, ) if numerator
is decreased by 2 and the denominator is increased by ( 7, ) the new fraction is equivalent with ( frac{1}{2} . ) Find the fractions.
7
58Write the place value of 3 in the following decimal numbers.
( mathbf{3 . 4 6} )
7
59Express the following as a rational number i.e. in the form ( frac{a}{b} ; ) where ( a, b in I ) and ( boldsymbol{b} neq mathbf{0} )
( mathbf{0 . 4 2 5} )
A ( cdot frac{12}{40} )
в. ( frac{19}{40} )
c. ( frac{41}{40} )
D. ( frac{17}{40} )
7
60Write the decimals shown in the
following place value table:
( begin{array}{llll}text { Thousands } & text { Hundreds } & text { Tens } \ text { (i) } & & & \ text { (ii) } & 9 & 5 & 4 \ text { (iii) } & & & \ & & & end{array} )
7
6111. Value of 13-143-13-(2-53] will be
(6) 10 13
7
62Write each of the following decimals in
words:
( mathbf{0 . 4 5 9} )
7
63Rename the following percents as decimals.
( mathbf{0 . 0 0 2 %} )
A. 0.02
B. 0.002
c. 0.0002
D. 0.00002
7
64A sum of Rs.3.75 was paid in 25 paisa,
10 paisa and 5 paisa coins.The number
of 10 paisa coins was four times the number of 25 paisa coins and twice of
the number of 5 paisa coins.How many were there of each type?
7
65Express the following as mixed fraction ( frac{17}{7} )7
66Express the following as improper fractions:
( mathbf{7} frac{mathbf{3}}{mathbf{4}} )
( mathbf{5} frac{mathbf{6}}{mathbf{7}} )
( 2 frac{5}{6} )
( 10 frac{3}{5} )
7
67Ratio of shaded fraction to whole is
( mathbf{A} cdot 1: 2 )
B. 1: 3
( mathbf{c} cdot 3: 4 )
D. 2: 3
7
6874. The simplification of
(0.63 + 0.37 +0.80) yields the
result
(1) 1.80 (2) 1.81
(3) 1.79 (4) 1.80
7
69A car covers first ( 100 mathrm{km} ) in ( 2 frac{1}{2} ) hours and then travels at a speed of
( 60 mathrm{km} / mathrm{hr} ) for ( 1 frac{1}{2} ) hours. Find the
average speed of the car for the whole
journey
7
7053. How long will a train 120 metre
long take to clear a platform 130
metre long, if its speed is 54 km/
h?
secs
secs
(1) 15 secs (2) 16
(3) 15. secs (4) 16
secs
secs
7
71Which fraction shows the part of the
( A cdot 2 )
( overline{9} )
B. ( frac{2}{8} )
( c cdot 2 )
7
D. 2
( G )
7
72Convert into improper fraction:
( 3 frac{2}{5} )
7
73Express 10 months as a fraction of
year
7
74Convert given percents to decimal fractions and also to fractions in
simplest forms:
( mathbf{2 5 %} )
7
75Simplify ( 3 frac{4}{7} times 2 frac{2}{5} times 1 frac{3}{4} )7
76Express as metres (m) using decimals:
( mathbf{3} boldsymbol{m} mathbf{6 5} boldsymbol{c m} )
7
77Identify the decimal and whole number
from the following.
( mathbf{9 8 1 0 1 . 2 9 1} )
7
78In a unit fraction, the numerator is
( mathbf{A} cdot mathbf{0} )
B.
( c cdot 2 )
( D )
7
79Add an express the sum as a mixed
fraction:
( frac{-12}{5} ) and ( frac{43}{10} )
7
80Place value of 9 in 7,92,83,456
( mathbf{A} ). Ten lakhs
B. 9 lakhs
c. 90,00,000
D. 90,000
7
81A fraction with denominator ( 3, ) which is
less than 1 is
( A cdot frac{4}{3} )
B.
( c cdot 1 frac{2}{3} )
D. None
7
82Fraction for 0.012 is:
A ( frac{12}{100} )
в. ( frac{12}{10} )
c. ( frac{2}{1000} )
D. ( frac{12}{1000} )
7
83Convert the following into proper fraction: ( 4 frac{3}{5} )7
84Express each of the following without using decimals:
( mathbf{1 2 . 0 5} boldsymbol{m} )
7
85Convert the given mixed fractions into improper ( 2 frac{1}{5} )7
86The sum of two numbers is 11 and the
sum of their reciprocals is ( frac{11}{28} ) Find the
numbers.
7
87Express the following as a rational number i.e. in the form ( frac{a}{b} ; ) where ( a, b in I ) and ( boldsymbol{b} neq mathbf{0} )
( mathbf{0 . 8 6} )
A ( cdot frac{43}{50} )
в. ( frac{13}{50} )
c. ( frac{91}{50} )
D. ( frac{83}{50} )
7
88Convert the given mixed fractions into improper ( 6 frac{1}{10} )7
89Convert ( frac{22}{17} ) into a mixed number7
90What is the multiplication of the numbers ( 1 frac{1}{3} times 3 frac{1}{4} times frac{7}{8} ? )
A ( cdot 3 frac{18}{24} )
B ( cdot_{2} frac{19}{24} )
c. ( _{3} frac{19}{24} )
D. ( _{2} frac{18}{24} )
7
91Represent the following mixed infinite decimal periodic fractions as common
fractions:
( left(frac{boldsymbol{P}^{3 / 2}+boldsymbol{q}^{3 / 2}}{boldsymbol{p}-boldsymbol{q}}-frac{boldsymbol{p}-boldsymbol{q}}{boldsymbol{P}^{1 / 2}+boldsymbol{q}^{1 / 2}}right)left(sqrt{boldsymbol{p} boldsymbol{q}} frac{sqrt{boldsymbol{p}}}{boldsymbol{p}}right. )
7
92Express ( 2 frac{1}{5} ) as a fraction of ( 7 frac{2}{9} )
A ( cdot frac{99}{325} )
в. ( frac{143}{9} )
c. ( frac{67}{200} )
D. ( frac{143}{18} )
7
93Represent the following mixed infinite decimal periodic fractions as common fractions:
( frac{(5 sqrt{3}+sqrt{50})(5-sqrt{24})}{sqrt{75}-5 sqrt{2}} )
7
94Express as kilometre (km) using decimals:
( mathbf{5 5} boldsymbol{m} )
7
95Arrange the following rational numbers in ascending order ( :-frac{7}{8}, frac{36}{-12}, frac{5}{-4}, frac{-2}{3} )7
9653. Arrange the following fractions
in decreasing order: 5.9 13
.3 7 11
3.7 11 7 3 11
7
97Find the fraction equivalent to 0.5436 and ( 0 . overline{5436} )7
986
12.
1 3 7 -3
Simplify: -+-+-
5
9 -3
+-+-
O
+
7
99A fraction whose numerator is greater than its denominator is fraction.
A. an improper
B. a proper
c. a mixed
D. None of these
7
100Place of 3 in 30,25,69,214
A. Ten crores
B. Millions
( c cdot 3,00,00,000 )
D. 30,00,00,000
7
101Solve ( frac{2}{3}+frac{1}{7} )7
102Write the following decimals in the place value table.
( mathbf{1 4 8 . 3 2} )
7
103Five eighteenths is equals to
A ( cdot frac{15}{18} )
в. ( frac{18}{5} )
c. 5.18
D. ( frac{5}{18} )
7
104Place the decimal point at the correct position in the following products.
( mathbf{6 . 3} times mathbf{5}=mathbf{3 1 5} )
7
105Find two fractions having 7 and 9 for their denominators, and such that their sum is ( 1 frac{10}{63} )7
106The value of 0.423 is
A ( cdot frac{419}{990} )
в. ( frac{423}{1000} )
c. ( frac{419}{999} )
D. ( frac{419}{1000} )
7
107Improper fraction of ( 12 frac{1}{6} ) is
( A cdot frac{72}{6} )
в. ( frac{73}{6} )
c. ( frac{108}{6} )
D. ( frac{85}{6} )
7
108Find the place value of 5 in 178057
109What is the place value of 5 in 65.457
110Simplify:
( frac{mathbf{2 . 3} times mathbf{2 . 3}}{mathbf{2 . 3} times mathbf{2 . 3 – 2} times mathbf{2 . 3} times mathbf{2 . 3}+mathbf{2 . 3} times mathbf{2 . 3}+} )
( A )
B. 3.24
c. 1.96
D. 5.29
7
111Simplify:
( frac{1+frac{1}{2}}{1-frac{1}{2}} div frac{4}{7}left(frac{2}{5}+frac{3}{10}right) ) of ( left(frac{frac{1}{2}+frac{1}{3}}{frac{1}{2}-frac{1}{3}}right) )
7
11215.4.2.8 。
“20*5*=
= =?
(1) 0
(3) 3
(2) 1
(4) 5
7
113Convert ( 3 frac{5}{6} ) into an improper fraction.7
114( 5 frac{2}{3}= )
A ( cdot frac{13}{3} )
B. 30
c. ( frac{17}{3} )
D. 10
7
115Subtract :
( frac{2}{7} ) from ( frac{19}{21} )
7
116Represent the following mixed infinite decimal periodic fractions as common fractions:
( frac{2 sqrt{b}}{sqrt{a}+sqrt{b}}+ )
[
left(frac{a^{3 / 2}+b^{3 / 2}}{sqrt{a}+sqrt{b}}-frac{1}{(a b)^{-1 / 2}}right)(a-b)^{-1}
]
7
117( 46.2 times 10^{-2}= )
A . 0.0462
B. 0.462
c. 4.62
D. 462
7
118( frac{3 frac{1}{4}-frac{4}{5} o f frac{5}{6}}{4 frac{1}{3} div frac{1}{5}-left(frac{3}{10}+21 frac{1}{5}right)} )
( left(1 frac{2}{3} o f 1 frac{1}{2}right) ) is equal to:
( A cdot 9 )
B ( cdot 11 frac{1}{2} )
c. 13
D. ( 15 frac{1}{2} )
7
119Identify the decimal and whole number
from the following.
( mathbf{9 9 9 9 9 . 9 9} )
7
120( \$ \$ 0.08= )
( mathbf{A} cdot 0.80 )
B . 0.800
c. 0.080
D. 0.8
7
121Fill in the boxes with the symbols ” to make the given statements true:
( frac{5}{11} square frac{3}{7} )
( frac{8}{15} square frac{3}{5} )
( frac{11}{14} square frac{29}{35} )
( frac{13}{27} square frac{15}{48} )
7
12275. The value of
1
17
17 is :
+
2.
1
3+
E
Sloga
@
(431
(4) 1
7
123Find the place value of 4 in 543.67
A. 4000
B. 400
( c cdot 40 )
D. 4
7
124Place value of 9 in 7,92,83,456
( mathbf{A} cdot 9,000 )
B. 9
c. 90,00,000
D. 90,000
7
125Write the following decimals in the place value table.
( mathbf{1 9 . 6 0} )
7
126Example for a proper fraction is
A ( cdot frac{28}{13} )
в. ( frac{11}{23} )
( c cdot frac{16}{9} )
D. ( frac{14}{3} )
7
127Convert the following improper fraction into mixed fraction.
( frac{11}{2} )
7
128If in mixed fraction form ( frac{19}{6} ) is equal to ( 3 frac{x}{6}, ) then what is the value of ( x ? )7
129Place the decimal point at the correct position in the following products. ( 16 times 2.47=3952 )7
130Numerator in the fraction ( frac{4}{7} ) is
A . 4
B. 7
( c cdot frac{4}{7} )
D.
7
131The grid below is shaded to represent fraction. What fraction of the grid is
A ( cdot frac{1}{20} )
B. 1 5
( c cdot frac{1}{4} )
D. 1
7
132The denominator of fraction is 6 more
than its numerator. If 2 is added to both
the numerator and denominator, the
fraction becomes ( 1 / 2 . ) Find the fraction.
A . ( 2 / 5 )
в. ( 4 / 6 )
c. ( 6 / 10 )
D. ( 1 / 5 )
7
133Write the number of decimal place in
( mathbf{7 . 0 0 3 4 9} )
7
134( 4 frac{1}{2}+2 frac{5}{7} times frac{7}{19}-frac{7}{19} div 2 )7
135Which of the following is not a proper fraction?
( A cdot frac{2}{3} )
B. ( _{4} )
( c cdot frac{5}{7} )
D. ( frac{6}{5} )
7
13656. A person travels 600 km by train
at 80km/hr, 800 km by ship at
40 km/hr. 500 km by aeroplane
at 400 km/hr and 100 km by car
at 50km/hr. What is the average
speed for the entire distance ?
(1) 65 km./hr.
(2) 60 km./hr.
(3) 60 35 km./hr.
(4) 62 km./hr.
7
137-4 3 1.
Find –X-X-
5 7 16
X
7
138In improper fraction the numerator is
always the denominator
A. less than
B. greater than
c. equal to
D. none
7
139Identify the decimal and whole number from the following
( mathbf{2 2 5 3 . 1 0 6} )
7
140Convert the given fractional numbers to
percent
( frac{2}{7} )
7
141Express as kilogram (kg) using decimals:
( 2750 g )
7
142Represent the following mixed infinite decimal periodic fractions as common fractions:
( left(frac{a^{1 / 2}+2}{a+2 a^{1 / 2}+1}-frac{a^{1 / 2}-2}{a-1}right) cdot frac{a^{1 / 2}+1}{a^{1 / 2}} )
7
143Write the following decimals in the place value table.
( mathbf{2 0 0 . 8 1 2} )
7
144Represent the following mixed infinite decimal periodic fractions as common fractions:
( 2(a+ )
( b)^{-1}(a b)^{1 / 2}left(1+frac{1}{4}(sqrt{frac{a}{b}}-sqrt{frac{b}{a}})^{2}right)^{1 / 2} )
7
145Find to five places of decimals the value
of :
( sqrt[3]{1003} )
7
146Write the additive inverse of each of ( frac{2}{8} ) and ( frac{-5}{9} )7
147Saritha bought ( frac{2}{5} ) metre of ribbon and Lalita ( frac{3}{4} ) metre of ribbon.What is the total length of the ribbon they bought?7
148Convert into improper fractions. ( 4 frac{5}{6} )7
14951. Find the value of
+999 494×99
(1) 90000 (2) 99000
(3) 90900 (4) 99990
7
15025 students can do a job in 12 days, but on the starting day, five of them informed thet they are not coming. By what fraction will the number of days
required for doing the whole work get increased?
A ( cdot frac{3}{5} )
B. ( frac{3}{7} )
( c cdot frac{3}{4} )
D.
7
1510.43 is rational and it can be written as
A ( cdot frac{43}{100} )
в. ( frac{43}{10} )
( c cdot frac{4}{3} )
D. ( frac{34}{10} )
7
152If the value of ( 1 frac{2}{3}+2 frac{4}{5}=frac{x}{y} ) then find
( boldsymbol{x}+boldsymbol{y} )
7
153Find7
154Express the following as a rational number i.e. in the form ( frac{a}{b} ; ) where ( a, b in I ) and ( boldsymbol{b} neq mathbf{0} )
( mathbf{0 . 7} overline{mathbf{1}} )
A ( cdot frac{22}{45} )
в. ( frac{32}{45} )
c. ( frac{16}{45} )
D. ( frac{19}{45} )
7
155Write the place value of 3 in the following decimal numbers.
( mathbf{3 2 . 4 6} )
7
156Improper fraction of ( 12 frac{1}{6} ) is
( A cdot frac{72}{6} )
в. ( frac{73}{6} )
c. ( frac{108}{6} )
D. ( frac{85}{6} )
7
157A quantity which expresses a part of the whole is called a/an
A. Fraction
B. Prime number
c. Integer
D. None of these
7
158Compare the fractions. ( frac{1}{3} square frac{7}{8} )7
159Find the difference of :
( frac{1}{12} ) and ( frac{3}{4} )
7
160Simplify:
( frac{3}{17} div frac{8}{17} times frac{2}{3}+left(-frac{2}{7}right) times frac{35}{33} div )
( left(-frac{7}{11}right) )
7
161f ( x ) is a proper fraction, show that ( frac{boldsymbol{x}}{mathbf{1}-boldsymbol{x}^{2}}-frac{boldsymbol{x}^{mathbf{3}}}{mathbf{1 – x}^{mathbf{6}}}+frac{boldsymbol{x}^{mathbf{5}}}{mathbf{1 – x}^{mathbf{1 0}}}-dots dots )
( frac{boldsymbol{x}}{mathbf{1}+boldsymbol{x}^{2}}+frac{boldsymbol{x}^{mathbf{3}}}{mathbf{1}+boldsymbol{x}^{mathbf{6}}}+frac{boldsymbol{x}^{mathbf{5}}}{mathbf{1}+boldsymbol{x}^{mathbf{1 0}}}+dots )
7
1620.34 can be represented as
A ( cdot frac{34}{100} )
в. ( frac{34}{1000} )
( c cdot frac{34}{10} )
D. None of the above
7
16351. Arrangement of the fractions
into ascending
O
order is
col
olor
cola
5/or
7
164( frac{4}{5} div frac{7}{15} ) of ( frac{8}{9} )7
165Convert given percents to decimal fractions and also to fractions in
simplest forms:
( mathbf{2 0 %} )
7
166Express as centimeter (cm) using
decimals:
( 4 mathrm{cm} 5 mathrm{mm} )
7
167Fraction for 0.004 is:
A ( cdot frac{4}{10000} )
В. ( frac{4}{1000} )
c. ( frac{4}{100} )
D. ( frac{4}{10} )
7
168( 2 frac{3}{11}+1 frac{3}{77} )7
169Express each of the following without using decimals:
( 8.354 k g )
7
170Convert 0.55 in to a fraction.
A ( cdot frac{11}{20} )
в. ( frac{2}{9} )
( c cdot frac{3}{9} )
D. ( frac{4}{9} )
7
171192
The standard form of
-168
7
172Convert given percents to decimal fractions and also to fractions in
simplest forms:
( mathbf{1 5 0 %} )
7
173Which of the following is an improper fraction?
A ( cdot frac{15}{1} )
B. ( frac{1}{3} )
( c cdot frac{2}{3} )
D. none of the above
7
174Express as centimeter (cm) using
decimals:
175 mm
7
175Express each of the following without using decimals:
( mathbf{3 . 5} mathrm{cm} )
7
176Convert 0.25 into fraction.
A ( cdot frac{3}{4} )
B. ( frac{1}{2} )
( c cdot frac{1}{4} )
D. none of the above
7
177Express the following as a rational number i.e. in the form ( frac{a}{b} ; ) where ( a, b in I ) and ( boldsymbol{b} neq mathbf{0} )
( 0.81 overline{3} )
A ( cdot frac{11}{75} )
в. ( frac{61}{75} )
c. ( frac{51}{75} )
D. ( frac{31}{75} )
7
17873. The value of
is:
35.
21
(1) 2
7
179If arranged order in ascending which number is in second place?
1234.456,5623.564,2563.965,9856.36
A. 1234.456
B . 5623.564
c. 2563.965
D. 9856.365
7
180Represent the following mixed infinite decimal periodic fractions as common fractions:
Simplify the following expressions. ( left(left(frac{y}{y-x}right)^{-2}-frac{(x+y)^{2}-4 x y}{x^{2}-x y}right) frac{x}{x^{2} y^{2}} )
7
181Represent the following mixed infinite decimal periodic fractions as common fractions:
( left(frac{sqrt{a}}{2}-frac{1}{2 sqrt{a}}right)^{2}left(frac{sqrt{a}-1}{sqrt{a}+1}-frac{sqrt{a}+1}{sqrt{a}-1}right) )
7
182What fraction of the candles on the cake
is lit?
( A cdot frac{4}{7} )
B. ( frac{4}{3} )
( c cdot 3 )
7
( D cdot frac{1}{1} )
4
7
183A badminton player won 6 games and lost 4.The fraction of the games he won
is
( A cdot frac{6}{4} )
B. ( frac{4}{6} )
( c cdot frac{6}{10} )
D. ( frac{5}{10} )
7
184Which of the following is a proper fraction?
A ( cdot 1 frac{1}{3} )
B. ( frac{5}{4} )
( c cdot frac{2}{3} )
D. None of these
7
185In the product ( B A times B 3=57 A ), what
are the respective positional values of ( mathrm{B} ) and A?
( A cdot 6,7 )
B. 5, 2
( c cdot 7,4 )
D. 2, 5
7
18614. Ravi has spent a qua
his life as a boy, one-fifth (5) as
ayouth, one-third (3) as man and
thirteen (13) years in old age.
What is his present age?
(1) 70 years (2) 80 years
(3) 60 years (4) 65 years
7
187Write the following decimals in the place value table.
( mathbf{0 . 2 9} )
7
188Represent the following mixed infinite decimal periodic fractions as common fractions:
( left(frac{3}{sqrt{1+a}}+sqrt{1-a}right):left(frac{3}{sqrt{1-a^{2}}}+1right) )
7
189Write the number of decimal place in
( mathbf{8 2 3 5 . 4 0 3} )
7
190Divide:
459.5 by 100
7
191Find the square root of 2 correct to two
places of decimal.
7
192Find the equivalent fraction of ( frac{36}{48} ) with
numerator 9
A ( cdot frac{36}{9} )
B. ( frac{9}{12} )
( c cdot frac{9}{48} )
D. 9
7
193Represent the following mixed infinite decimal periodic fractions as common fractions:
( left(frac{1}{a-sqrt{2}}-frac{a^{2}+4}{a^{3}-sqrt{8}}right) )
( left(frac{a}{sqrt{2}}+1+frac{sqrt{2}}{a}right)^{-1} )
7
194Which 3 has greater place value 64.363
( ? )
A. 3 at one tenth place.
B. 3 at one hundredth plcae
c. both have equal
D. can not say
7
195Rename the following percents as decimals.
( 62.9 % )
A . 6.29
B. 0.629
c. 0.0629
D. 0.00629
7
196Express as kilometre (km) using decimals:
( 15 k m 35 m )
7
197Rafiq exercised for ( frac{3}{6} ) of an hour, while Rohit exercised for ( frac{3}{4} ) of an hour.Who exercised for a longer time?7
198( 2 . overline{8768} ) expressed as a rational number is
A ( cdot_{2} frac{878}{999} )
в. ( 2_{10}^{9} )
c. ( 2 frac{292}{333} )
D. ( _{2} frac{4394}{4995} )
7
199Which of the following is not an improper fraction?
( A cdot frac{4}{3} )
B. ( frac{3}{2} )
( c cdot frac{5}{3} )
D. ( frac{7}{11} )
7
200( frac{0.25}{0.4} ) is equal to
This question has multiple correct options
( mathbf{A} cdot frac{5}{8} )
B. ( frac{25}{40} )
c. ( frac{16}{19} )
D. None of the above
7
201Correct to two places of decimal7
202Write each of the following decimals in
words:
( mathbf{9 . 0 0 4} )
7
203Convert ( 3 frac{920}{1331} ) into improper fraction7
204Represent the following mixed infinite decimal periodic fractions as common fractions:
( frac{b-x}{sqrt{b}-sqrt{x}}-frac{b^{3 / 2}-x^{3 / 2}}{b-x} )
7
205Convert the following improper fraction into mixed fraction.
( frac{27}{4} )
7
206The place value of 7 in 17.5 is
A. tens
B. units
c. one-tenth
D. one-hundredths
7
207Express the following as a fraction and simplify:
( mathbf{0 . 0 0 8} )
A ( cdot frac{1}{25} )
в. ( frac{1}{125} )
c. ( frac{2}{25} )
D. ( frac{4}{125} )
7
208Express as kilogram (kg) using decimals:
( 5 k g 750 g )
7
209Evaluate the following:
( 0.8 times frac{frac{7}{12}}{frac{5}{24}} )
A ( cdot_{2} frac{6}{25} )
в. ( _{3} frac{6}{25} )
c. ( frac{6}{25} )
D. ( frac{26}{25} )
7
210Rationalise the denominator of
( frac{mathbf{5}}{sqrt{mathbf{3}}-sqrt{mathbf{5}}} )
7
211Express as kilometre (km) using decimals:
( 5 m )
7
212The place value of 2 in the number
( mathbf{1 5 . 5 2 6} ) is
A . 20
B. 2
( c cdot frac{2}{10} )
D. ( frac{2}{100} )
7
213Javed was given ( frac{5}{7} ) of a basket of oranges.What fraction of oranges was